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* Examples of research projects

* Highlight some aspects and common features

* Personal view on the key factors for success

» Suggest some educational reforms

* Recommend adopting a approach



1. Genome-wide associations studies (GWAS)
a) Intro to genetics
b) Overview of 3 studies

2. Factors for success

3. Statistical education & data science



1. Genome-wide association
studies (GWAS)
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Australian researchers find epilepsy gene

Australian researchers have discovered a gene
linked to the most common form of epilepsy, which
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The study, conducted by the Florey Institute of
Neuroscience and Mental Health, has found a gene
.. Which causes focal epilepsy and can be passed
" 2108 Y down through families.
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Bipolar disorder

Also known as manic depression,
it affects 100 million people
around the world

Hypertension

High blood pressure affects

16 million people in Britain. Can lead to
stroke, heart disease and kidney failure

Type 1diabetes
Diabetic condition in which
sufferers have to inject insulin,
Affects 350,000 people in UK

Type 2 diabetes

Almost 2 million Britons are affected by
this late-onset disease, which is linked
with the growing obesity epidemic

(ireland, €1) 70p
Thursday 7 June 2007

ENT

Coronary heart disease
The most frequent cause of death in Britain,
with 100,000 victims every year. By 2020, it
will be the biggest killer in the world

Rheumatoid arthritis
Nearly 400,000 people in Britain
are afflicted with this auto-immune
disease of the joints

Crohn’s disease

Up to 60,000 people are affected by this
debilitating bowel condition which can
cause distress and pain for a lifetime
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Human genome

&y chromosome

Biological and Environmental Research Information System, Oak Ridge National Laboratory, genomicscience.energy.gov and genomics.energy.gov



* Total length = 3 billion bases/nucleotides

* Each person inherits 2 complete copies
(one each from mother & father)



..TAACGCGATAAGAGATTAGCCCAAAAACACAGACATGGAAATAGCGTAAACCTGATCAA...
..TAACGCGATAAGAGATTAGCCCAAAAACACAGACATGGAAATAGCGTAAACCTGATCAA...
..TAACGCGATAAGAGATTAGCCCAAAAACACAGACATGGAAATAGCGTAAACCTGATCAA..
..TAACGCGATAAGAGATTAGCCCAAAAACACAGACATGGAAATAGCGTAAACCTGATCAA...
..TAACGCGATAAGATATTAGCCCAAAAACACAGACATGGAAATAGCGTAAACCTGATCAA...
..TAACGCGATAAGATATTAGCCCAAAAACACAGACATGGAAATAGCGTAAACCTGATCAA..
..TAACGCGATAAGATATTAGCCCAAAAACACAGACATGGAAATAGCGTAAACCTGATCAA...
..TAACGCGATAAGATATTAGCCCAAAAACACAGACATGGTAATAGCGTAAACCTGATCAA...
..TAACGCGATAAGATATTAGCCCAAAAACACAGACATGGTAATAGCGTAAACCTGATCAA..
..TAACGCGATAAGATATTAGCCCAAAAACACAGACATGGTAATAGCGTAAACCTGATCAA...
..TAACGCGATAAGATATTAGCCCAAAAACACAGACATGGTAATAGCGTAAACCTGATCAA...



..TAACGCGATAAGAGATTAGCCCAAAAACACAGACATGG
..TAACGCGATAAGAGATTAGCCCAAAAACACAGACATGG
..TAACGCGATAAGAGATTAGCCCAAAAACACAGACATGG
..TAACGCGATAAGAGATTAGCCCAAAAACACAGACATGG
..TAACGCGATAAGATATTAGCCCAAAAACACAGACATGG
..TAACGCGATAAGATATTAGCCCAAAAACACAGACATGG
..TAACGCGATAAGATATTAGCCCAAAAACACAGACATGG

AATAGCGTAAACCTGATCAA...
AATAGCGTAAACCTGATCAA...
AATAGCGTAAACCTGATCAA..
AATAGCGTAAACCTGATCAA...
AATAGCGTAAACCTGATCAA...
AATAGCGTAAACCTGATCAA..
AATAGCGTAAACCTGATCAA...

..TAACGCGATAAGATATTAGCCCAAAAACACAGACATGGTAATAGCGTAAACCTGATCAA...
..TAACGCGATAAGATATTAGCCCAAAAACACAGACATGGTAATAGCGTAAACCTGATCAA..
..TAACGCGATAAGATATTAGCCCAAAAACACAGACATGGTAATAGCGTAAACCTGATCAA...
...TAACGCGATAAGATATTAGCCCAAAAACACAGACATGGTAATAGCGTAAACCTGATCAA...



Single nucleotide polymorphisms (SNPs)
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Single nucleotide polymorphisms (SNPs)
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Single nucleotide polymorphisms (SNPs)

Individual 1
_____________ @________________________@_____________________
_____________ @________________________@_____________________
Individual 2
_____________ [y J
_____________ [«
Individual 3
_____________ 1________________________1_____________________



Single nucleotide polymorphisms (SNPs)

Individual 1

_____________ 7, R - T
Individual 2

_____________ p R PR, [P
Individual 3

_____________ s

Count the 1 types at each SNP to create genotypes



Best current knowledge:

* 10 million SNPs in the human genome
* One in every ~300 bases, on average
 (Total human genome = 3 billion bases)

Other facts:
* Nearby SNPs are correlated due to shared inheritance
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WTCCC (2007)
Case-control study of 7 diseases

WTCCC (2010)
Case-control study of 8 diseases

IMSGC & WTCCC2 (2011)
Meta-analysis of case-control studies for 1 disease



Four V’s: Tell-tale signs:

— scale of data * Need >1 computer
* Velocity — streaming data * Need >1 piece of software
* Variety — different forms of data  * Need >1 analyst

— bias, noise, artefacts



WTCCC (2007) study design

500,000 SNPs

1958 Birth Cohort
3,000 controls

UK Blood Service
2,000 cases Bipolar disorder
2,000 cases Coronary artery disease
2,000 cases Crohn’s disease
2,000 cases Hypertension
2,000 cases Rheumatoid arthritis
2,000 cases Type 1 diabetes

2,000 cases Type 2 diabetes



rs6540301

58C UKBS BD

Measuring SNPs

(X,Y) for each SNP for each individual




Testing association

e Data: 3 X 2 contingency table at each SNP
» Test for association (y? with 1 degree of freedom)

Genotype
0 1 2
Cases 109 546 1659

Controls 89 478 1503
= p-value
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Results

‘Signal’ plots

CAD hit region, chromosome 9 CO hit region, chromosome 1
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Results

Signal plot from another study

Lettre et al. 2011
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* Doubled the number of known genetic associations (12 - 24)
* Found genetic effects present in more than one disease

* Hints of different genetic architectures for different disease classes:
autoimmune vs metabolic vs other

Definitely a success!



rs6540301

58C UKBS BD

Inferring genotypes

‘Genotype calling’

Designed new method (CHIAMO)

Hierarchical Bayesian clustering with
informative priors

Used data from all individuals

Allowed for variation between cohorts

Showed Affymetrix data is actually

reasonably good




Population structure

Principal components analysis (PCA)
Reference panel with known ancestry

Uses data across the whole genome

."41_:7

WTCCC

Excluded samples
YRI

CEU

CHB=JPT




Combination analyses

* Combined cases
e.g. autoimmune diseases

* Combined controls
(‘expanded reference set’)



Quality control (QC) & filtering

* Big data = ‘rare’ errors become numerous
 Artefacts and random noise unavoidable

 Systematic QC is mandatory
e Samples
* SNPs
* Putative associations

* Automated & manual procedures



‘Cluster plot” inspection

510843660

rs1957779
UKBS BD




QC ‘epic fail’

* The letter to Nature...



* 20 statisticians/analysts, across 4 institutions

* Full-time scientific programmer

* Diversity, parallelisation, and sometimes duplication of work
* Regular meetings

* Frequent collaboration and communication



* Every statistician was also a programmer

e Computing cluster

* Multiple programming environments: C++, R, bash,...
* Developed a suite of software in tandem with analysis



WTCCC (2010) study design

3,000 controls

1958 Birth Cohort
UK Blood Service

2,000 cases
2,000 cases
2,000 cases
2,000 cases
2,000 cases
2,000 cases
2,000 cases
2,000 cases

Bipolar disorder

Breast cancer

Coronary artery disease
Crohn’s disease
Hypertension
Rheumatoid arthritis
Type 1 diabetes

Type 2 diabetes

10,000 CNVs (100,000 probes)




Copy number variants (CNVs)

N



Measuring CNVs
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Measuring CNVs
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Probe variance scaling

Replicate measurements
(duplicates & controls)

Use replicates to calculate per-probe
variance

Rescale each probe

Freprency
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Inferring (‘calling’)
CNVs

Developed two different methods
(Oxford vs Cambridge)

Methods were complementary
Served as sanity check

Boosted our confidence in our results

NBS
0.427

-0.2
0.897

BC
0.428

-0.1
0.96

0.1 0.422 05
0.895 0.893

CNVR765.1
Chr 2, 41,817,888 (0.9 kb)

SDC = 0.965 Con =0.9939
MAF =0.434 HWE = 0.384
R2 HapMap = 0.562 (0.562)

R2 Affy6 =0.994 (0.994)

Ver = Standard. TRUE

P I I

a8

Combined Data

BF MAF BF (ER)
RA RR (ER)

oM o ot om am 0o




Extensive QC

Multiple QC stages
Multiple QC criteria

Consumed by far the bulk of our time!

Samples excluded before calling

Excluded
before
testing

Total samples used in CNV association testing

| Proportion of females in sample tested for CNV association|
2
B

% — -
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UKBS 8 0 0 0 47 3 15 28 101 71 37 1450
58C 2 0 ] 0 0 3 36 63 79 81 1448 48%
BC 3 0 1 14 0 12 39 105 123 74 1832 100%
BD 27 0 2 0 0 4 20 103 95 67 1869  62%
CAD 13 2 4 0 47 6 190 676% | 67 53 1549 22%
CD 27 1 0 11 47 29 158 336 121 114 | 1751 60%
HT 4 0 5 0 0 5 69 101 116 75 1898 60%
RA 46 3 1 1 46 5 41 263 202 72 1717 74%
TID 2 2 1 0 0 1 73 94 134 72 1905  49%
T2D 17 7 4 0 2 4 39 121 91 89 1885 42%
Total 15 18 26 189 72 680 1963 | 1099 734 | 17304 58%




‘www.nature.com/ nature

doi: 10.1038/nature08979

5 Quality control procedures

5.1 Sample quality control filters

Two sample exclusion lists were constructed and used in
the analysis of the data. The first list (pre-calling ex-
clusion list) was used to exclude samples from the final
calling of the CNVs using the processed intensity data.
The second list (pre-testing exclusion list) was used to
exclude samples from the testing for CNV association
based on the final set of CNV calls. A full break down of
excluded sampl given in Supplementary Table 8.

Pre-calling exclusions

1963 samples were excluded from the final CNV calling
based on several different criteria described below. Some
of the filters were applied to the raw intensity data while
others were based on CNV calls obtained from an initial
calling run on the data.

Supplier error 149 samples were excluded due to ev-
idence that the samples were not the same as those indi-
cated by the supplier manifest. Sequenom QC and call-
ing gender on the CNV array were used to confirm these
discrepancies.

Sample handling error 15 samples were excluded due
to evidence of an error during arraying the samples for
CNV screening.

Multi-cohort duplicates 18 samples (9 pairs) were de-
tected that showed high correlation with another sample
from a different cohort, indicating a sample that has gen-
uinely been collected twice as the patient has at least
two of diseases. No sample handling issue could be de-
tected, and the data matched for both samples with the
Sequenom and WTCCC1 SNP data. Both samples in
the pair were excluded. The samples were identified by
taking the summarised probe-level signal (first principal
component) over 1,500 good quality polymorphic CNVs
and running an all-vs-all correlation analysis (Pearson) to
identify highly correlated samples.

Non-European samples 26 samples were excluded
due to evidence of non-European ancestry. A PCA anal-
ysis was carried out on CNV calls from an initial calling
run, that included HapMap individuals from the CEU,
YRI and JPT+CHB panels. Examination of the loadings
and scores of this analysis indicated that only the first

SUPPLEMENTARY INFORMATION

p was discriminati ) sam-
ples from the YRI and JPT+CHB samples. Supplemen-
tary Figure 12 shows the scores for each sample from
the first principal component and highlights 14 outlying
BC samples that were excluded. A further 11 CD sam-
ples and 1 RA samples were also excluded based on self-
reported ancestry information.

Mixed sample 189 samples were excluded due to the
samples having a high correlation with another sample on
the same well of the screening plate pair or an adjacent
well in the same plate suggesting that these samples con-
sist of a mixture of DNA from two or more non-identical
individuals.

Low signal 72 samples were excluded due to having a
low signal intensity for either the green or the red chan-
nel ( < 100). The precise quantities used are the metrics
named “Signall ityRed™ and “Si Green”
from the Agilent Feature Extraction software'”. These
give a measure of the median background-subtracted
red and green channel signals respectively (not logged)
across all non-control probes on the array.

High derivative log ratio spread Samples were ex-
cluded based on a measure of the variability in log-ratio
(logy(R/G)) across all probes for each sample. The Agi-
lent DLRS metric was used which is measures the spread
of the differences between the log ratio values of con-
secutive probes'®. High values of this metric indicate a
poor sample. We excluded samples if DLRS was either
> 0.35, or > 0.3 if it is a repeat and the original sample
had a DLRS > 0.35.

Outlying CAD samples 405 CAD samples were
identified that noticeably reduced the ability to distin-
guish different CNV classes when the samples were
included. Removing these samples lead to a clear
improvement in the ability to cluster some CNVs in the
CAD cohort. This problem was observed for multiple
probes in this study and is illustrated in Supplementary
Figure 13 (see first and second panels) where we
extracted from CNV ILMN_IM_4 a subset of probes
(A_16_P30155705, chr1_047654910_047654955,
A_16_P30155706, chr1_047654921 047654966,
chrl 047654923 047654968, A_16.P30155708) that
showed no sign of CNV polymorphism in the non CAD
cohorts. However, a set of CAD samples was clearly
separated from the main distribution at these probes.

20

W nature.com nature

doi: 101038/ nature0BE9TY

To identify the subset of problematic CAD sam-
ples we wsed two probe sets (average signal for
IEMNIM 4 probes  deseribed  above and  probes
ACIEP20232231, A_I6_P40333000, A 16 PO2994736
in TNV CNVRG214.1) oul of CNV regions for
which the separation of oullying CAD samples was
particularly obvious. For both probe sets, we manuoally
set cutodls for the mean normalized signal value and we
excluded samples that exceeded both cutoffs (see the
third panel of Supplementary Figure 13 with excluded
samples marked in red)

Further analysis of the processing pipeline indicated
that the likely source of the problem was mis-calibrated
DNA concentration,  Varable DNA concentrations dif-
ferentially affected each probe, thus altering the within
sample probe inensity rnkings, In quantile normalisa-
tion, probe intensities were first ranked within the sam-
ple. and each intensity data point was then replaced by
the appropriate quantile of the marginal distribution of
probe intensities over all samples. Therefore, altered
probe rankings eventually affected the normalized signal
dhisaribution.

Inittial-calling quality metric 409 samples were iden-
tifhed based on 3 metnes designed to measure the quality
of samples from an initial set of calls. The three met-
rics were (a) avernge CWNV call rate messured as the pro-
portion of CNV calls made en each sample using a call-
ing threshold of 0.93, (b) average posterior probability of
the most likely CNV class across all CNVs for a sam-
ple, and (c) average log-density (from the final model fit
after merging) across all CNVs for a sample. Samples
were ranked according o the minimum of the ranks on
these three metrics and sample excluded so that the total
number of exchasions was 2% of the wial sample size

Pre-testing exclusions

A funther 1832 samples were excluded before testing for
association of CNWs with the disease phenotypes. This
resulied in a wial of 17304 samples used in lesting.

Post-calling quality metric 1099 samples were ex-
cluded based on thresholding three metrics applied to a
final set of calls from the CNVCALL and CNWiools stan-
dard calling pipelines.

Dispersion metric A sel of hard calls were made using
CNViwols, A hard call 15 the genotype with the max-
imum likelihood given the estimates of the model pa-

1

rameters. For each CNV these hard calls were used 0
generate empirical means and standard deviations of the
components that individials were assigned 1o {the sample
means conditional on the callsj. Then for each individ-
wal at each CNV the absolute distance from the mean of
the distribaition that individual was assigned to was cal-
culated. These were then averaged across CNVs o get
the dispersion statistic for each individual. A threshold
of 1.3 was chosen after visual inspection, all individuals
that exceeded this threshold were excluded from testing
(see Supplementary Figure 14),

Posterior  Probablistic calls were made at each CNWV
using CNVCALL, For each individual the probability of
assignment to the most-likely (non-null) class was aver-
aged across all the CNVs polymaorphic after merging. A
threshold of (2967 was chosen after visual inspection, all
individuals that failed o exceed this threshold were ex-
cluded from testing {see Supplementary Figure 15)

Heternazygosity  Using hard-calls from the CNVCALL
(thresholded at a value of 0.93) the proportion of hei-
erozygote calls in each individual was calculated on the
CHNWs polymorphic after merging. As this is a sum of in-
dependent binomials the Central Limit Theorem Applies.
Muodelling this as a normal distribution using the median
as a robust estimator of the mean of the distribution. in-
dividuals were excluded if they lay in either il with the
probability of exclusion set ar /2000 under the null {see
Supplementary Figure 16).

Duplicates and close relatives 734 samples were ex-
cluded because they were identified w be duplicates or
closely related samples. Samples from the same individ-
ual (duplicated samples) were identified as those having
aculls cormelation (; r hard calls at o 0.95 threshold) of
= 0%, Closely related samples were identified as those
having a calls correlation of between 0.6 and 0.9, Supple-
mentary Figure 17 shows a plot of maximum calls corre-
lation for each sample with any other sample. For each
set of samples from the sume individual. only the sample
with the highest average posterior was retained. Like-
wise, for closely related samples from the same collec-
tiom, only the sample with the highest average posterior
was retained,

52 CNV quality control filters

We used 16 different analysis pipelines where different
aspects of the data pre-processing were vared.  Sup-

NTARY INFORMATION



Pipelines
16 normalisation schemes

2 calling algorithms

No single method always the best

Run them all, pick the best for each CNV

Loci targeted

11,541

J

\J

Non-identical loci targeted

11,107

\

s

Non-identical multi-class CNVs

4,539

Y

[ Non-identical well-separated

multi-class CNVs

3,645

\J

i Non-duplicate well-separated )

multi-class CNVs

3,432

434 loci with identical probe sets
removed
(368 from pairs, 60 from triples
and 6 from quadruplicates)

6,568 loci removed as they
are called with 1 class

894 CNVs removed as they
failed quality control

213 CNVs removed as they had
—— very high calls correlation (? > —>
0.995) with an overlapping CNV




IMSGC & WTCCC2 (2011) study design

Large GWAS meta-analysis:

» 23 research groups, from 15 countries
* 10,000 cases (multiple sclerosis)

* 17,000 controls

* 460,000 SNPs



N ¢
Top SNP Riskallele Candidate (O \%“’ ¥
and risk allele OR frequency gene PF O <&
1111213
5 : 4548358 C — 7 « ® RACD
wl7) ' o A o EVI 15 .
= R rs11581062° G e VCAM1 5 .
- - ! A —e 2 e
B AR E=1 TR
* G — 106 4 e e UCCDCO
. 447 c g No gene 0 - -
_ A = PLEK 4 e CeD
darge meta-analysis : s — il
A = SP140 3 .
A —=t=— EOMES 1 ew
. . . c wege= No gene P —==
Big Data = many findings! 3+ o — o 1 we
G —  TME 7 .
(<} =g CD86 5 e
G S A 2 e CceD
4 ] == NFKBIMANBA] 8
[] e 7 ees TID
G P— T 1 e ch
A —— IL128 F PS.CID
5 [} == BACH2 1. CeDT10
A g THEMIS 5 . CeD
g - A === MYB(AHI1) 3
8 B mmresees. rs17066096 G e— [L22RA2 3 e
BTN W o W Al 313102841 A — 0 - == RA
§ AP ST 51738074 G —t=— TAGAP 2 e CeD
£ * rs354033 G = ZNF746 4 .
o 7 rs1520 G —p— | 3 e
- 54410871 G —— MYC 2
= 152019060 G = PVT1 1.
8- MEETie . / s a : % =
o $ 5125 A —-_— 021 £ CeDBD
37923837 G o= HHEX 3
9 me_ . ! G — ; 4
3 phommsse ove . 5630023 C e==g= CXCRS Besw
10 lress. . /1 3 6 —— TN 4.
|y 510466829 A @ CLECL1 9 e e TID
e rs123¢ A === (Y 3 e RA
5049 G Qg ARLGIPA 13 .
rs4902647 G S ZFP36L1 3 e CeDT1D
rs2300603 A —t=  BATF E
32119704 C =t GALC(GPRES) 3 .
rs2744148 G P SOXB 4 0
0786 A —— E 8. TID
LA -— 1 ew
11e C -—g— 25 e (o]
15180515 G =8—— RPSEKBI 9 e
|rs7238078 A —t MALTY 2w
rs1077667 G w—tt=  TNFSF14 3 e
158112449 G — TYK2ICAM 12 TID
3874628 A == MPVI7L2(IL12RBT) 11 &
52303759 C 4= DKKL1(CD37) 9 e =
A - 4 13 e RA
152248359 G —8— CYP24A1 2.
56062314 A g TNFRSF68 15
52283792 C == MAPK1 9 e
rs140522 A === SC02 15

L) T

L T 1
12346567 89101112
—logyq P value



Population structure

Multiple methods evaluated
(PCA covariates, genomic control, matching
by clustering...)

Linear mixed model approach developed

Accounts for correlations due to multiple
levels of relatedness
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Maturing QC

Increasing automation of QC procedures
Reducing human intervention

‘Automated cluster checking’,
using genotype calls from multiple cohorts
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2. Factors for success

Informed by these studies and my general experience



Factors in 3 parts

* Projects
* Methods
* People



The basics

* Ask the right questions
* Collect relevant data

* Collect quality data

Good experimental design
* Replicates & controls

* Representative samples
* Use reference datasets

Pragmatic analysis

 Sanity checks and visualisation
 Systematic quality control

* Try multiple methods

Capture the ‘Big’ value
e Use all of the data

* Combine datasets

* Use reference datasets



Keep it real, make it easy

* Solve a ‘real’ problem
(i.e. one that people want solved)

* Provide a software implementation
* Write documentation
* Show examples

Without an implementation, your
method won’t be used by
practitioners, will be excluded in
comparisons, and possibly ignored in
reviews

Make it robust
* Follow standards

* Implementation should work most
of the time

* Cope with unexpected/unusual data
* Fail gracefully as a last resort

Robustness beats optimality



Statistical knowledge
e Statistical insight, ‘data savvy’
* Knowledge of variety of methods

Data analysis skills

* Data management & manipulation
* Visualisation & exploratory analysis
* Can run a variety of methods

Computational skills
* Programming
* Unix & cluster computing

» Software engineering tools &
principles (version control, code
reusability)

Collaboration & communication skills
 Can work in teams
e Can talk to non-experts



Factors with little impact

* Methods with no implementation
* Methods with no relevant real data examples

* Theoretical optimality



3. Statistical education &
data science



The gap between education and practice

* Strong focus on theory

* Less focus on practice

* Fresh graduates are not equipped for real data analysis
* ‘Big Data’ problems are even further out of reach



* Real data is messy, how do | deal with it?

* There is no single best method: how do | embrace plurality?
* Ad hoc procedures: when and how to use them safely?

* Data management

» Software engineering

* Working as part of a team



What is ‘data science’?

Data Science Venn Diagram v2.0

~ Data Science

Computer
Science




Bin Yu’s portrait of a data scientist:
* Statistics

* Domain/science knowledge

* Computing
 Collaboration/teamwork
 Communication to outsiders



Bin Yu, on embracing data science

We need to...reform statistical curricula

We need to fortify our position in data
science by focusing on training skills of:

* Critical thinking
* Computing

 Leadership, interpersonal and public
communication



Rafael Irizarry, on teaching applied statistics

Challenges:

* Applied statisticians don't teach what
we actually do
* Applied statistics work is published

outside of the ‘flagship’ statistics
journals

* Resistance from students to open-
ended assignments(...?)



Mathematical vs applied statistics

* Undergraduate education is foundational
 Relevant for all statisticians

* Need to understand real data analysis in
order to develop relevant theory



1. Foundational skills subjects:
* Principles of data management
* Programming for statisticians

» Software engineering for statisticians
(perhaps as a service course?)

2. Final year major project:
* Real, messy data
e Teamwork

» Deliverables to include an R package
(or similar)

3. Every subject to have one main
project using real data

4. Collaborative projects with computer
science students

5. External ‘industry’ guest lecturers

6. Develop assessment schemes that
focus on the solution process rather
than on getting the ‘right” answer



Are these proposals relevant to the Department of Mathematics &
Statistics?

What changes can/should be made?

What are the main barriers to reform?

What is our role in these changes?



Is the Department of Mathematics & Statistics able to teach
programming & software engineering skills?

How much flexibility/creativity is possible with assessment schemes?

Should we try to emulate how engineers are taught?



